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Review
Growing recognition of the numerous, diverse and
important roles played by non-coding RNA in all organ-
isms motivates better elucidation of these cellular com-
ponents. Comparative genomics is a powerful tool for
this task and is arguably preferable to any high-through-
put experimental technology currently available,
because evolutionary conservation highlights function-
ally important regions. Conserved secondary structure,
rather than primary sequence, is the hallmark of many
functionally important RNAs, because compensatory
substitutions in base-paired regions preserve structure.
Unfortunately, such substitutions also obscure
sequence identity and confound alignment algorithms,
which complicates analysis greatly. This paper surveys
recent computational advances in this difficult arena,
which have enabled genome-scale prediction of cross-
species conserved RNA elements. These predictions
suggest that a wealth of these elements indeed exist.

Introduction
Non-coding RNAs (ncRNAs) are functional transcripts that
do not encode proteins. A handful of examples, such as
transfer and ribosomal RNAs, have been well known since
the dawn of molecular biology, and probably have existed
since the dawn of life. These few examples have critical and
deeply central roles, but ironically, elucidation of the full
spectrum of ncRNA activity has received relatively little
attention. Within the past 10–15 years, however, several
striking discoveries, including RNA interference, micro-
RNAs and riboswitches, have demonstrated that RNAs
have unexpectedly diverse, sophisticated and important
roles in all living organisms, which has sparked renewed
interest in the ‘‘modern RNAworld’’ [1]. To hint at the scope
of the issue, only 1.2%of the humangenome encodes protein
[2], but recent data suggest that 90% of the genome is
transcribed on one or both strands, to some extent, at some
time, in some tissues [3]. The significance of this observation
remains unclear and controversial, but a growing body
of evidence points to the presence of many functionally
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important non-coding transcripts [4]. Even if the bulk of
the non-coding transcription is noise, this still provides a
vast substrate upon which natural selection could have
acted to generate a multitude of biologically important
ncRNAs. Thus, even striking ncRNA-related discoveries,
such as microRNAs, may only be the tip of the iceberg.

Interest in conducting computational screens for func-
tional RNAs has risen with their increased prominence [5].
However, in contrast to protein coding genes, whose regular
codon structure provides strong signals within nucleotide
sequences, the signals for ncRNAs are subtler. For example,
many ncRNAs are believed to be processed out of longer
primary transcripts, including introns of protein-coding
genes, and hence, lack features such as proximal promoters
in addition to codon structure [1]. There is, however, one
general characteristic shared by many (but not all) known
ncRNAs: they fold into complex shapes that are crucial to
function and are thus conserved. Although prediction of
RNA 3D structure is less well developed than protein struc-
ture prediction, the prediction of RNA secondary structure
(the set of intramolecular, largelyWatson–Crick, base pairs
that define the fundamental units from which the tertiary
structure is formed) is reasonably well understood and
computationally tractable. Furthermore, secondary struc-
ture also tends to be conserved, whereas primary sequences
often evolve more rapidly (Figure 1), and are of limited use
except when searching for close homologs. These factsmake
secondary structure the key signal to be exploited in ncRNA
prediction. Although secondary structure (henceforth,
simply structure) prediction is tractable, it is not trivial
(e.g. involving interactions between nucleotides at variable
and sometimes large distances in the primary sequence),
which makes the problem challenging intellectually and
computationally [5].

Most RNAmolecules will fold into some secondary struc-
ture, but given the importance of secondary structure in
functional ncRNAs, it is reasonable to ask whether they
have more stable structures than random genomic
sequences. A negative answer to this questionwas provided
about a decade ago. That is, the folding energy of RNAgenes
is not distinguished easily from that of appropriately chosen
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Figure 1. Compensating base changes. Changes in base pairing might preserve

structure, but not the primary sequence. In addition to the usual Watson–Crick

base pairs, less stable G–U pairs (sometimes called ‘‘wobble pairs’’) are often seen

in RNAs, and are evolutionarily important because they allow single base

substitutions that are not structurally disruptive. This might allow sequences to

accumulate substitutions much more rapidly than would be the case if both

nucleotides in a base pair needed to be changed more or less simultaneously.

Adapted with permission from Ref. [80].
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background sequences, such as randomly shuffled versions
of the RNA gene itself [6,7]. Therefore, a simple screening
approach that seeks unusually stable genomic segments,
will generally not work.MicroRNAs, whose precursors form
unusually stable stem-loops, are a notable exception [8,9].

Although searching for possible structured elements in
one nucleotide sequence is generally ineffective, as dis-
cussed above, searching in multiple (orthologous)
sequences can be highly effective, since evolutionary con-
servation highlights functionally important regions of all
kinds. Importantly, such searches leverage the rapidly
increasing body of comparative genomic sequence data.
A key issue, however, is that the evolutionary signature of
anRNA gene is quite different from that of a protein-coding
gene. In particular, as noted earlier, the nucleotide
sequence of an ncRNA might evolve relatively rapidly,
which makes identification and alignment of orthologous
sequences difficult or impossible, especially when using
tools that focus only on sequences. However, patterns of
compensating base changes, for example, an A–U base pair
in a human RNA sequence that corresponds to a C–G pair
in mice, can provide evidence to support the existence of a
conserved RNA structure (without requiring conserved
sequence; Figure 1) and insight into the structure itself.
Indeed, short of X-ray crystallography, this type of com-
parative analysis, done carefully by human experts [10],
has been the gold standard for RNA secondary structure
prediction for more than 40 years. In a nutshell, this
highlights the key challenges in computational prediction
of ncRNAs: to find orthologous regions, expose the common
structure therein, and do so rapidly and accurately.

The comparative approach is important for an
additional reason. Over the next few years, we expect that
emerging technology such as high-throughput sequencing
of RNA (RNAseq [11]) will reveal the transcriptomes of
many organisms with unprecedented depth and precision.
Yet, given the extensive breadth of genomic transcription
now observed, at least in mammals, evidence of transcrip-
tion can no longer be taken as proof of functional import-
ance. Any observed transcript might just be noise or
incompletely degraded detritus that arises from the
expression of some nearby, functionally important RNA.
Furthermore, experimental protocols will remain limited
with regard to the diversity of species, cell types, states,
growth and stress conditions that are probed. Con-
sequently, lack of measured expression of a given genomic
10
segment is not proof of lack of function. By contrast,
evolutionary conservation strongly suggests functional
importance, whether or not expression has already been
verified experimentally. This does not deny the value of
experimental evidence, of course, nor the existence of
functionally important species-specific ncRNAs, but
merely argues that detection of evolutionarily conserved
ncRNAs by comparative genomics is a powerful tool, and
belongs in any effort to understand living systems.

Computational search for conserved RNA structure
does have certain important limitations. We highlight
two of them here, because they color much of what follows.
First, these searches are expensive computationally, prin-
cipally because of the nature of the underlying RNA folding
algorithms that need to be applied to these multiple
sequences [12,13]. Even single-sequence folding algor-
ithms have run times that grow as the cube of the sequence
length. Applied naively, however fast screening of a
sequence of 1 kb is, it will be 1000 times slower for
10 kb and 1 million times slower for 100 kb. Hence, all
successful programs in this arena are engineered carefully
to control run time, which entails some, hopefully modest,
loss of accuracy on long genomic sequences. For example,
one simple, widely used strategy is the ‘‘sliding window’’
approach, wherein the genomic sequence is cut into
multiple, overlapping, fixed-length segments (windows)
that are processed separately. This obviously limits the
cubic run time penalty to the length of the window, but
unfortunately, also limits the lengths of discoverable struc-
tures and risks arbitrarily truncating them. Even using
substantially more sophisticated techniques, genome-scale
ncRNA analyses often consume tens to hundreds of com-
puter years. These high computational costs are one reason
why ncRNA gene finding is still in its infancy.

The second significant limitation of these general
searches for conserved RNA secondary structures is more
conceptual. It is natural to want to think of each element
discovered as an ncRNA gene, but the truth is more com-
plex because the approaches described here might gener-
ate only a partial picture for each ncRNA. For example,
technical limitations related to window boundaries or
splicing could result in partial or fragmentary predictions.
More intrinsically, some ncRNAs lack conserved secondary
structures, or may have only patches of conserved struc-
ture embedded in longer, largely unstructured transcripts.
Additionally, conserved, functionally important RNA
structures, such as the selenocysteine insertion sequence
(SECIS element), are known to exist in mRNAs, usually in
their untranslated regions. Therefore, identification of
RNA structures in genomic data should trigger post-pro-
cessing steps and follow-up experiments to characterize
transcript boundaries (and function) more precisely. For
reasons of simplicity, however, we will refer to individual
conserved structures as ncRNA genes.

This review focuses explicitly on computational predic-
tion of ncRNA elements by comparative genomics, that is,
the discovery of conserved structured elements in multiple
genomic sequences. Other methods for de novo prediction
have succeeded in some contexts (e.g. exploiting organism-
specific differences in mono- or dinucleotide frequencies of
ncRNAs versus background [14–16]), but the comparative
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approach appears to be the most broadly applicable. We
will say little about the related ncRNA homology search
problem (finding new instances of a particular RNA family
given one or more examples) but this equally important
task comes with its own set of issues [17], especially the
difficulty of finding homologs outside the phylogenetic
range of known examples.

From RNA folding to gene finding
Even though RNA structure cannot be detected reliably by
merely folding single sequences, the principles obtained
from folding single sequences are fundamental and often
constitute an implicit part of more elaborate methods. For
example, to date, no large-scale RNA structure screens
have accounted for so-called pseudoknots, because the
underlying RNA folding algorithms do not do that.Without
pseudoknots, RNA secondary structure can be represented
by nested parentheses. For example, the hairpin structure
of the sequence AAAAUUCGGCAAUUUU with base pairs
exactly between As and Us can be written as
((((((....)))))). Although most large RNA struc-
tures do contain pseudoknots, they make up a relatively
small proportion of the overall structure. Algorithms that
account for thesemore general cases are dramaticallymore
complex (and slower) for seemingly modest gains in
accuracy.

Folding of sequences typically is performed through
energy minimization, whereby different structural
elements are associated with experimentally measured
energy parameters. Well-known programs for this task
are mfold [18] and RNAfold [19]. Rather than minimizing
the free energy, folding can also be carried out in a prob-
abilistic framework, wherein the structure with the high-
est probability is sought. This is achieved through so-called
stochastic context-free grammars (SCFGs; for example see
Refs. [20,21]), which typically are parameterized using
probabilities extracted from curated rRNA and tRNA
alignments [22,23]. The probabilistic and energetic
frameworks are connected intimately, because one expects
energetically destabilizing substitutions to be evolutiona-
rily disfavored. Indeed, recent work has shown that
statistics derived from good structural alignments can
be used to improve upon experimentally measured energy
parameters [24]. Energy-based and SCFG-based methods
are now part of the core inventory of ncRNA gene predic-
tion methods. These principles for folding single sequences
are employed formultiple sequences as well, often together
with schemes that simultaneously search for compensat-
ing base changes.

In silico screening for RNA structures
Prediction of RNA structure in genomic sequences is
related closely to the existing methods for RNA structure
prediction. As indicated above, multiple sequences are
needed to predict RNA structures reliably. Several strat-
egies exist for RNA structure prediction based on multiple
sequences [25], which can be categorized loosely as ‘‘align-
first,’’ ‘‘fold-first’’ and ‘‘joint.’’ As the name suggests,
align-first strategies start by aligning all sequences using
standard multiple sequence alignment tools, followed
by inference of their presumed common structure. That
inference typically proceeds by some combination of folding
energy prediction and detection of compensatory base
changes, for example, as quantified by high mutual infor-
mation [20,22] between pairs of columns in the alignment.
These methods work best when sequence conservation is
sufficiently low that compensatory changes are not rare,
but high enough thatmost are bracketed by well-conserved
patches, which constrain the changes to be correctly
aligned (and hence visible as a high mutual information
score between paired columns). Fold-first strategies fold
individual sequences separately, and then align the struc-
tures to each other. These strategies can be expected to
excel when sequence conservation is low, but structure is
clear-cut, stable and well-conserved. Joint strategies, such
as approaches based on Sankoff’s algorithm [26], simul-
taneously align and fold their input sequences. In a sense,
the align-first and fold-first strategies are aimed at oppo-
site evolutionary extremes. The joint approach, with an
appropriate joint model for sequence and structure evol-
ution, subsumes the other two, as shown in Ref. [27]. In
practice, however, high computational costs and difficul-
ties in appropriately specifying such an evolutionarymodel
have hindered the joint methods, which has left viable
niches for all three approaches. Current approaches for de
novo genomic screening mostly utilize methods based on
the fold-first and joint strategies, as exemplified in
Figure 2, in which prediction is based on finding structures
within relatively short sequences locally, rather than glob-
ally. Meanwhile, fold-first methods mainly have been
applied in homology searches [28,29].

Besides ignoring pseudoknots, another crucial limita-
tion of current genomic screeningmethods is their inability
to cope with structural variation. That is, they assume that
the individual RNA sequences share a conserved structure
with little variation. In particular, structural inserts,
which result in large length differences, are handled poorly
by current programs. Such structural inserts are, however,
frequently observed in evolutionarily old ncRNAs, such as
RNaseP [30]. Even the state-of-the-art SCFG-based
homology search program Infernal deals only indirectly
with structural inserts through its ability to match a local
substructure [31]. Recent programs for comparison of RNA
structure, such as LocARNA [32], point out some ways to
address the problem. Additionally, the presence of two
nearby structural alignments suggests an intervening
structural insertion/deletion in some of the sequences, a
situation that potentially could be detected in a post-pro-
cessing step. However, none of these approaches fully
overcomes this limitation of the current de novo screening
methods.

In the following discussion, we provide an overview of
the main methodologies applied for de novo RNA structure
discovery. These are also listed in Table 1.

Exploiting sequence-based multiple alignments for

ncRNA screens

A natural approach for de novo structure-based search is to
exploit existing sequence based alignments, that is, the
align-first strategy outlined above. QRNAwas an early tool
of this kind [33]. It screened pairwise BLASTn [34] align-
ments using three probabilistic models: a pair-SCFG for
11



Figure 2. Strategies for ncRNA screening. The upper path illustrates RNA structure prediction using existing sequence alignments that are divided into overlapping

windows (an align first strategy). By contrast, in the lower path, labeled ‘‘fold and align,’’ sequence and structure alignments are performed directly from unaligned

sequence data (a joint strategy), which searches simultaneously for conserved structure and sequence, and results in structural alignments. To date, alternative fold-first

strategies have not been applied to genome-scale screening.
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detecting RNA structures, and two pair-HMMs (hidden
Markov models) for detecting coding and background
sequences, respectively. QRNA screens on sequences from
Escherichia coli and Saccharomyces cerevisiae lead to the
identification and subsequent experimental verification of
several novel ncRNAs [35,36].

Given the apparent importance of a stable structure, it is
reasonable to speculate that the predicted folding energy of
a given sequence would be a useful clue for the detection of
putative ncRNAs. This appears to be true, but has proved
difficult to verify, and required careful statistical analysis
Table 1. A Summary of the main screens described here

Methoda Organismsb #Candc Experi

QRNA [33,35] (pair-SCFG) Bacteria 275 11 of 4

sampl

RNAz [39,40] (Energy, SVM) Vertebrates 46,000 3 of to

ENCODE 7,093 43 of 1

EvoFold [43] (phylo-SCFG) Vertebrates 48,500 (subse

ENCODE 9,953 43 of 1

FOLDALIGN [52,59,61] (Sankoff) Human-mouse 1,300 32 of 3

4 of to

Dynalign [53,54] (Sankoff) Bacteria 1,200 none r

CMfinder [62,64,83] (SCFG, EM) Bacteria 1,466 (subse

ENCODE 6,587 10 of t

1 of 10
aName and core methodology
bGenomes screened; ‘‘ENCODE’’ means ENCODE regions of 17-way vertebrate alignm
cNumber of predicted RNA structures
dApproximate maximum size of motifs; number in parenthesis is typical size of motifs
eType of conservation exploited to produce alignments (Seq means sequence-level; St
fThis number is joint for RNAz and EvoFold
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and the consideration of both mono- and dinucleotide fre-
quencies, because the latteraffect stackingenergies [6,7,37].
The magnitude of the energy difference between random
sequences and functional ncRNAs, although generally not
sufficient for reliably detecting thembased on the genome of
a single species, becomes more pronounced in multiple
alignments. AlifoldZ introduced this approach [38]. It com-
pared the folding energy that resulted from a consensus
structure prediction on the native alignment with those of
shuffled alignments, that is, those that arise from randomly
shuffling the columns of the native alignment. More
mental verification Sized Conse Constraints

9 randomly

ed, northern

200 Seq Sliding windows;

sequence based

alignments

p 5, northern 200 Seq Sliding windows;

sequence based

alignments
75, RT-PCRf

quent studies) 750

(<50)

Seq Sliding windows;

sequence based

alignments
75, RT-PCRf

6, RT-PCR; 200 Str Motif size and type

in local pairwise

structural alignments

p 12, northern

eported 150 Seq Sliding windows;

HMM based alignment

constraints

quent studies) None

(<200)

Str Motif size and type

in local multiple

structural alignments
op 11, RT-PCR;

, northern

ents

r means structure-level)
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recently, the RNAz framework [39,40] has improved speed
and sensitivity by introducing a fast regression to estimate
the stability of a native RNA compared to shuffled
sequences, together with a new measure for structural
conservation and a support vector machine (SVM) classifier
to predict whether an alignment contains an ncRNA.

None of the methods discussed so far directly exploit
phylogenetic information, for example, the tree structure
and branch lengths that relate individual sequences in the
alignment. Pfold [41,42] and EvoFold [43] do this. These
methods compare two alternative statistical models: a
background model for unstructured sequence versus an
SCFGmodel of RNA sequence and structure, both of which
are evaluated with respect to the given phylogeny. A
section of the alignment is predicted to be an ncRNA if
it is more likely under the RNA model than under the
backgroundmodel. In particular, a pattern of substitutions
in putatively base-paired columns that favor structure-
preserving compensatory changes tends to support the
RNA model over the background model.
Figure 3. RNAz screen. (a) Genomic locations of RNAz predictions from Ref. [40] comp

distributed widely in the genome. For example, 16 860 of the RNAz predictions lie more

fraction of ncRNAs in this category is underestimated, since alignments tend to be less r

them. Of the 15 380 predictions that lie within annotated protein-coding genes, the majo

and 30 UTRs, or their introns. (Some candidates are counted in multiple categories beca

view of a genomic region on human chromosome 7 identified in the ENCODE screen [47

as an unusually high AlifoldZ Z-score (–9.5). In addition, the region corresponds to an isl

this locus is expressed in testis. (c) The predicted structure of a portion of the element
QRNA, RNAz and EvoFold all use sliding window strat-
egies. The main advantage of this approach is speed; its
major disadvantage is its potential for mis-prediction near
the window boundaries, including the possibility of miss-
ing RNAs that are longer than the overlap of the windows.
These drawbacks might be ameliorated by adjusting win-
dow lengths dynamically, but to the best of our knowledge,
this has not been attempted.

The University of California Santa Cruz (UCSC) gen-
ome browser provides whole-genome MULTIZ alignments
of vertebrates [44]. Initial screens of their eight-way align-
ments (human, chimp, dog, mouse, rat, chicken, zebrafish
and fugu) using RNAz and EvoFold have resulted in an
unexpectedly large number of ncRNA candidates: 36 000
[40] and 48 000 [43], respectively. In both cases, candidates
were widely distributed throughout the genome, as illus-
trated in Figure 3 for the RNAz screen. One of the EvoFold
candidates, the ncRNA gene HAR1F (human accelerated
region 1F), has been the subject of an in-depth follow-up
study [45] that has demonstrated its specific expression
ared to annotated protein-coding genes. As illustrated here, ncRNA candidates are

than 10 kb from the nearest annotated protein-coding gene. It is plausible that the

eliable in these regions, and the align-first strategy used by this screen depends on

rity (11 205) lie in introns flanked by coding exons, but a significant fraction lie in 50

use of ambiguous gene annotation. Coding exons were not screened.) (b) Detailed

]. It contains overlapping predictions from RNAz (red) and EvoFold (green), as well

and of high conservation. The RACEfrags track verifies that an ncRNA element from

is shown. Adapted with permission from Ref. [40].
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during cortical development and accelerated evolution
along the human lineage. RNAz and EvoFold have since
been applied in several other screens of diverse organisms.
For example, an RNAz screen on porcine expressed
sequence tag (EST) sequences has allowed for direct com-
parison of expression data in 92 cDNA libraries from 35
tissues and different developmental stages [46]. The screen
has found that brain and developmental tissues host the
highest relative numbers of predicted ncRNAs structures
(�2% of genes expressed at detectable levels), whereas
ncRNA content for the other tissues amounts to about
1%. A summary of other screens can be found on the
RNA Structure in Genomic Sequence supplementary
web-page: http://genome.ku.dk/resources/rsgs.

It has proven difficult to estimate the reliability of these
predictions. The standard method of comparing predic-
tions to some gold standard is problematic, because the
available true positives, that is, known ncRNAs, although
generally well-recovered by these methods, are potentially
not representative of yet undiscovered ncRNAs. Further-
more, there is no satisfactory, biologically justifiable set of
true negatives, particularly in light of the widespread
transcription observed in mammals. Instead, studies
generally estimate their false discovery rate (FDR) by
comparison with randomly shuffled sequences or align-
ments. Based on this approach, the human screens
described above have been estimated to have FDRs of
15–50% for RNAz and up to 70% for EvoFold [47]. This
emphasizes the need for continued development of ncRNA
prediction methods, as well as for follow-up experiments.
Figure 4. The value of local, structural alignments. (a) Two genomic sequences of 500 nuc

three annotated tRNAs; AC069454, from human chromosome 17, contains one. The sequ

example, the former has a G + C content of 35%, whereas the human sequence is 63%

parameters), the result is ‘‘No significant similarity found.’’ (b) Comparison of the sequence

structural alignments of the red region in humans to the three indicated Eug. gracilis regio

FOLDALIGN-score ranking. The sequence identities of the three pairwise alignments are: (

tRNA database [81], of the human tRNA. (d) The structural alignment of region (3) with the

Ref. [81], where matching pairs of nested parentheses indicate canonical base pairs, dots i

consensus RNA structure predicted by FOLDALIGN from this pair of regions, which is in
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However, even if the true FDR in these studies were 90%,
the remaining 10% still constitute thousands of novel
ncRNAs in the human genome. One technical point that
is worth noting is that the accuracy of the FDR estimation
itself will depend on how well the randomized data reflect
the complexities of real genomes. For example, the dinucleo-
tide composition of an RNA sequence affects its stacking
energy, thus randomization procedures that do not control
for this yield biased FDR estimates [48]. Recent work has
provided procedures that generate randomized multiple
sequence alignments that approximately preserve dinucleo-
tide-, gap-, and other statistics observed in the native align-
ments [48–50], thus providing a more appropriate null
distribution for FDR estimation, but the FDR estimates
reported in the ncRNA screens discussed here generally
are not based on these improved methods.

Genomic screening by pairwise local structural

alignments

Although exploiting multiple alignments saves compu-
tational costs, there is the significant disadvantage that
alignments might simply be incorrect, which will become
increasingly likely as the sequence similarity drops. For
example, the sensitivity of AlifoldZ drops sharply for pair-
wise sequence similarities below 60% [38]. This limitations
can, at the expense of computational costs, be addressed
within the above-mentioned joint approaches, for example,
the Sankoff framework for simultaneously folding and
aligning sequences [26]. Available methods using this
strategy include FOLDALIGN [51,52], Dynalign [53,54],
leotides are shown. This segment of V00158, from Eug. gracilis chloroplast, contains

ences are relatively dissimilar, as is apparent from the nucleotide color-coding; for

G + C. When comparing the sequences via standard pairwise BLAST (using default

s using FOLDALIGN [51,52], a local, structural alignment tool, results in three pairwise

ns, each corresponding to an annotated tRNA. The numbers in parentheses give the

1) 45%, (2) 48% and (3) 40%, respectively. (c) Secondary structure, as annotated in the

human tRNA. The ‘‘Struct’’ lines give the structures of these two tRNAs, again from

ndicate unpaired nucleotides, and dashes represent gaps. The middle line shows the

excellent agreement with Ref. [81].

http://genome.ku.dk/resources/rsgs


Figure 5. Sequence-based alignments can obscure ncRNA structure. Even small changes in a sequence-based multiple alignment can significantly affect the recognition of

ncRNAs. The upper panel shows a six-species MULTIZ alignment of a region that contains a box H/ACA snoRNA annotated in Rfam [82] (accession RF00402) that has been

downloaded from the UCSC genome browser1. The use of RNAz to search for ncRNAs in this alignment resulted in a low score of 0.132, which suggests ‘‘no RNA’’. In the

lower panel, the same sequences have been aligned by CMfinder. Although only a few positions are realigned (key changes indicated in red), RNAz gives this structurally

revised alignment a relatively high score of 0.709, correctly suggesting the presence of a conserved RNA structure. Matching parentheses in the structure lines (Str; bottom

line in each group) indicate base pairs in the consensus secondary structure predicted by RNAz.
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and LocARNA [32], which are all energy-based, as well .as
Consan [55] and StemLoc [56], which are SCFG-based.
Furthermore, alternatives to the Sankoff framework have
also been developed, such as SCARNA [57], which com-
pares stem fragments to construct pairwise structural
alignments.

The latest version of Dynalign [54] predicts ncRNAs
using its own Sankoff-based pairwise structural align-
ments [53] and an SVM classifier trained on those align-
ments. In a pairwise analysis of E. coli and Salmonella
typhi, its additional alignment flexibility appears to have
resulted in improved sensitivity compared to RNAz, at
least for regions that exhibit low sequence similarity
(<50% identity). Using a sliding window approach based
on genome-wise BLAST and MUMmer [58] alignments,
approximately 1000 novel candidates have been reported
in these two genomes [54].

To detect remotely homologous ncRNAs, it is desirable
to extend such searches to directly perform local structural
alignments, rather than relying on purely sequence-based
tools such as BLAST. To illustrate this, we have examined
a 500-nucleotide region from the human genome that
contains one known tRNA and a 500-nucleotide region
from the distant Euglena gracilis chloroplast genome that
contains three tRNAs. BLAST reports no significantmatch
between them. FOLDALIGN, however, detects one human
sub-region that structurally aligns to three different
locations within the chloroplast sequence, exactly corre-
sponding to the tRNAs therein, despite the low (40–50%)
sequence identities among these matching regions
(Figure 4). Note the importance, and difficulty, of local
alignment here, which allows a structure common to a
small portion of each input sequence to be detected amidst
extraneous flanking sequences; the algorithm must thus
identify element boundaries as well as structure. The
1 http://genome.ucsc.edu/cgi-bin/hgTracks?org=human&db=hg18&position=chr3:
180369542-180369721&rnaGene=pack&ensGene=pack. This human sequence is anno-
tated as a snoRNA pseudogene in the UCSC browser, although both it and its cow
orthologarehigh-scoringmembers of themanually annotatedRfam ‘‘seed’’ alignment for
this family, and the other four sequences are included in the automatically generated
Rfam ‘‘full’’ alignment.
FOLDALIGN screen takes about 2 min, however, com-
pared to �0.03 sec for BLAST, which further motivates
the desire to accelerate these methods.

FOLDALIGNhas also been used to screen regions of low
sequence similarity between humans and mice [59]. These
have been selected by choosing corresponding, but una-
ligned regions as identified via the UCSC genome browser
MULTIZ alignments [60]. A total of 37 000 such regions
have been screened, each in forward and reverse direc-
tions. The screen resulted in �1300 candidates, with an
FDR of �50% as estimated from dinucleotide-controlled
shuffled data. This particular screen took 5 months of
computer time using 70 CPUs (Pentium IV, 2.4 GHz) with
an earlier version of FOLDALIGN [61]. The current ver-
sion of FOLDALIGN is estimated to be 20 times faster (i.e.
1 week on similar hardware), largely because of its ability
to discard poor intermediate alignments, but even after
this improvement in speed, an all-to-all comparison of two
mammalian genomes remains highly impractical. Other
applications of FOLDALIGN for genomic sequence
analyses can be found at: http://genome.ku.dk/resources/
rsgs.

Employing local multiple structural alignments for

screening

Using more than two organisms will potentially yield more
accurate predictions. Extending the FOLDALIGN pairwise
screen, CMfinder [62] was applied to the 44 ENCODE
regions [3], which cover 1% of the human genome. CMfinder
discovers structured RNA motifs in a set of unaligned
sequences. It builds local alignments, that is, flanking
regions that do not appear to contain RNA structures are
ignored. Furthermore, entire sequences that do not appear
to contain RNA structures are also ignored, which is valu-
able because the phylogenetic range of a given ncRNA is
typically not known in advance. CMfinder builds an initial
heuristic local alignment using sequence- and energy-based
seed structures from which it derives a covariance model
[20,22,63] (a specialized SCFG). The alignment and model
are then refined jointly, using an approach akin to that
described in Ref. [22], but extended to local alignments.
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Figure 6. Comparison of ENCODE scans. The Venn diagram compares RNA

elements in the ENCODE regions predicted by the three screening methods

discussed here, CMfinder, RNAz, and EvoFold. Only predictions from input data

that are common to all three studies are tallied, that is, repeat, exon and PhastCons

regions are excluded [64]. As illustrated here, of the 4933 candidates reported by

CMfinder, 3861 were reported by neither of the other methods, while 106

candidates were reported by all three. Adapted with permission from [Ref. 64].
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Although the approach is free of any constraints imposed by
fixedwindow sizes and pre-computed alignments, to control
run time, there are some a priori, user-specified restrictions
with regard to the complexities of motifs (e.g. number of
hairpins) that can be discovered. In the CMfinder ENCODE
screen [64], pre-computedMULTIZsequencealignments for
the ENCODE regions were used, but, in contrast to the
align-first methods discussed earlier, they have been used
only to indicate orthology, and not alignment at the nucleo-
tide level. Repetitive sequences have been included, but
exons and PhastCons [65] elements were omitted. The
average sequence identity of the 56 017 input alignments
was 50%, with an average sequence length of 155 nucleo-
tides. The screen resulted in 6587 ncRNA candidates, with
an estimated FDR of 50% [64]. About 60% of the candidates
were located in non-coding parts of protein-coding genes. Of
these, 83% were located in introns, 14% in 50 untranslated
regions (UTRs)and theremainder in30UTRs,an interesting
biasperhaps causedby thepoorannotationofUTRs.Asmall
number of candidates have been tested experimentally.
Most of these show tissue-specific expression in humans.
For one 67-nucleotide candidate in a 4-kb intron of the
neuron-specific synapsin 3 gene, northern blot analysis
has confirmed expression of a 2.8-kb ncRNA in the brain
[64].

One key observation from this study was that the lower
the identity of the input sequences, the more they were
realigned, that is, the structure-driven alignments pro-
duced by CMfinder differed more from the MULTIZ
sequence-based alignments as sequence identity declined.
Although this trend is not surprising, its extent suggests
that standard alignments are misleading unless well-con-
served in primary sequence. The issue is significant
because 25% of candidates had more than 50% of their
positions realigned when compared to the original MUL-
TIZ alignments. Furthermore, many regions with identi-
ties above 70% were realigned, and even small
realignments can have an impact, as illustrated in
Figure 5.

The RNAZ, EvoFold and CMfinder screens processed
slightly different subsets of the ENCODE regions, but their
predictions on the common subset can be compared directly
[47]. For example, 330 genomic loci were predicted by
RNAz and EvoFold. This degree of overlap, as well as
the other overlaps quantified in Figure 6, is highly unlikely
to have occurred purely by chance, given the lengths of the
predictions in comparison to the total size of the ENCODE
regions. Nevertheless, this numerically modest level of
concordance among methods appears somewhat disap-
pointing. However, further investigation has shown that
this was mainly to the result of different sensitivities in
different regimes of sequence composition and sequence
similarity [47]. Although EvoFold candidates primarily lie
in highly conserved, AU-rich regions, RNAz (and CMfin-
der) candidates tend to be slightly GC-rich and exhibit
more sequence variation. We speculate that RNAz and
EvoFold are missing candidates because of their reliance
on sequence-based alignments, particularly in diverged
regions, whereas CMfinder favors such regions, but ignores
evolutionary relationships exploited by EvoFold, and ener-
getically stable candidates that lack strong covariance
16
patterns favored by RNAz. Thus, overall, these methods
can be considered as complementary, with each of them
able to predict a fraction of the �20 000 unique candidate
loci found in total in the ENCODE regions.

Applications of CMfinder to prokaryotes (emphasizing
riboswitch discovery) are also listed at http://genome.ku.dk/
resources/rsgs.

Weeagerly await future development ofmethods for local
structural RNA alignments. For example, an extension of
SCARNA [57], called SCARNA_LM, has been published
recently [66]. It creates local multiple alignments using
the same principles of comparing fixed-size stem fragments
thatare separated into their 50 and30 parts, respectively.We
hope that other methods will follow as well.

Conclusions and perspectives
To date, annotation in the genome databases relates
almost exclusively to protein coding genes. By contrast,
the computational screens for ncRNAs described here
suggest that a large number of functional ncRNAs remain
to be found. This is consistent with the observation that
most of the non-coding mammalian genome is transcribed.
Computational de novo discovery of ncRNAs within geno-
mic sequences is still in its infancy. Nevertheless, these
screens provide a valuable starting point for subsequent
studies of specific genomic regions and their functional
characterization.

In silico screens are useful as the information generated
can be correlated with other studies, or to obtain a more
general picture of the putative RNA structure content.
Currently, screens essentially only address RNA secondary
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structure, with the numerous limitations discussed above,
which leaves much room for improvement. Another major
issue is their high computational cost (i.e. their time and
memory requirements). Their high falsediscovery rates also
make them inappropriate for systematic annotation and
necessitate experimental follow-up. There is clearly
a demand for faster, better computational approaches.
Nonetheless, present methods have demonstrated their
value and have opened an entirely new branch within
comparative genomics. For instance, simple extrapolation
from theENCODEstudies suggests prediction of�2million
RNA structures within the human genome, albeit poten-
tially with many structures per transcript, high FDR and
other caveats discussed above. Computational methods
should, however, be developed beyond searching for local
RNA structures, in part, because some ncRNAs might have
no structure (e.g. piRNAs [67]), orwell-defined structures on
only parts of their sequence (e.g. Evf-1 [68,69]; see also
Ref.[70]). Additionally, ncRNAs are known to vary consider-
ably in size, ranging from �20 to �100 000 nucleotides,
which contributes significantly to the challenge at hand.
Fusion transcripts also pose a serious computational chal-
lenge that has not yet been addressed. An example of such a
transcript (the cDNA KIAA0510) that involves segments
from different chromosomes was reported a few years ago
[71], a finding echoed by the ENCODE project [3]. Exper-
imental approaches continue to lead to novel discoveries.
The lincRNAs [72] are one recent example. They were
identified by a combination of ChIP-Seq and custom tiling
array technologies, and include 1600 large,multiexonRNAs
that are expressed in multiple mouse cell types and show
evidence of purifying selection. Information obtained from
such studies can in turn be incorporated into computational
methods, which then might lead to further discoveries of
novel ncRNAs. Methods to predict mRNA-like ncRNAs
promise to contribute to this [73]. Another challenge is to
unravel the significance of conserved structures in UTRs of
protein-coding genes, which constitute a sizeable fraction
of predictions. For example, CMfinder candidate r-6354
([64], see http://genome.ku.dk/resources/cmf_encode/pages/
candidate.php?id=r-6354) which is found in a 50 UTR in
several mammals, might have a role in regulating its own
mRNA, but is also a predicted microRNA precursor. In this
situation, comparison with known elements in UTR data-
bases and/or attempting de novo motif finding in UTRs are
plausible approaches [74,75].

Putative ncRNAs are available from various sources,
including the UCSC browser [60] and (with some degree of
overlap) RNAdb [76]. In our online supplement at http://
genome.ku.dk/resources/rsgs, we provide links to files that
define the genomic locations of many of the ncRNAs can-
didates described in this paper. These files may be passed
directly to the UCSC genome browser, so that the candi-
dates may be viewed in context with other genomic fea-
tures, such as gene predictions and sequence-based
multispecies conservation information.

Novel strategies are also emerging for post-clustering of
predicted RNA structures. In particular, LocARNA [32], a
Sankoff-based approach for structural alignment, has
grouped structurally related ncRNAs found by RNAz in a
screen ofCiona intestinalis andCiona savignyi. The cluster-
ing has identified known RNA families, such as tRNAs,
microRNAs, and spliceosomal RNAs, and has suggested
additional groups that consist of novel, so-far unannotated
RNAs. Moreover, clustering based on FoldalignM [77]
has detected novel relationships among microRNA family
members [78]. Another clustering approach that uses
RNAforester has suggested some of the structural charac-
teristics that distinguish microRNA precursors from
the large number of other transcribed RNA stem-loops in
mammalian genomes [79].

The increased availability of genome sequences has
exposed sufficient nucleotide variation to allow the detec-
tion of patterns of RNA structure in sequence-based align-
ments, but has also revealed that sequence-based
alignments alone might not be sufficient for detection of
ncRNAs. The computational screens performed so far have
pushed the limits of comparative genomics and pointed
(perhaps unsurprisingly) towards structural alignments as
an essential co-requisite for detection of ncRNAs. As we
have seen, this is not only the case for those orthologous
genomic regions whose sequences are poorly conserved
across related organisms, but might also be true for small
portions of otherwise well-conserved regions. This in turn
poses new challenges in addressing comparative genomics
from an RNA perspective. Furthermore, despite remark-
able progress in computer hardware and algorithms, even
faster tools are highly desirable.With this inmind, tools for
integrating new genomic sequences with existing de novo
ncRNA predictions would be valuable, both for annotating
the new genome and for strengthening or dismissing pre-
viously marginal predictions. These predictions only need
to be carried out in limited regions, therefore, they should
be fast.

Even though further advances in methods for predict-
ing RNA structures within genomic sequences are
expected, the field is also developing tools to predict
RNA interactions,withmanyutilizing the sameprinciples
as forRNA folding. The ability to predict RNA interactions
will be an essential component in assigning a putative
functional context for predicted RNA structures in the
future.

Note added in proof
See Kavanaugh [84] for a recent success with the single-
sequence folding energy approach, as well as some inves-
tigation of the subtleties inherent in sliding window
approaches.
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